Abstract

Partition coefficients (PCs) are essential parameters for understanding the toxicokinetics of chemicals in the human body since they are used in the description of different processes of absorption, distribution, and excretion in physiologically based pharmacokinetic (PBPK) models used in chemical exposure and risk assessment. The goal of this study was to determine urine:air, blood:air and plasma:air partition coefficients (PCs) of microbial volatile organic compounds (mVOCs) previously selected as having high potential as biomarkers of indoor mold exposure. To achieve this goal, the vial-equilibration technique was used, and quantification was performed using headspace gas chromatography tandem mass spectrometry (HS-GC-MS/MS) analysis. Matrix:air PCs of 19 different mVOCs have been successfully determined and their values ranged between 14 and 3586 for urine:air, 78 and 4721 for blood:air and 64 and 5604 for plasma:air PCs. Water:air PCs were also determined, and their values varied between 16 and 2210, showing a good correlation with urine:air PCs for 17 compounds of the selected mVOCs (R2 = 0.97, slope close to unity) indicating that water:air PCs below 103 may be a good surrogate for urine:air PCs. All studied mVOCs have high blood:air PCs (greater than 78) indicating strong pulmonary uptake. Due to their high blood:urine PCs, some mVOCs may be more easily measured in blood than in urine. This work is an important preliminary step toward the use of mVOCs as potential biomarkers of indoor mold exposure. The data obtained in this study will help to determine the most appropriate matrix to use in this biomonitoring approach and will eventually facilitate the development of PBPK models for these chemicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call