Abstract

Bisphenol A (BPA) is a widely produced chemical that is mainly used as raw material for manufacturing plastic products. It is an endocrine disruptor and causes irreversible damage to the human body. Bisphenol S (BPS), an alternative to BPA, has low dose effects on toxicology and genotoxicity. Herein, we constructed a highly porous crystalline covalent organic framework (COF, CTpPa-2)-modified glassy carbon electrode (GCE) for the electrochemical sensing of BPA and BPS. The electrochemical properties of the CTpPa-2/GCE were characterized using galvanostatic charge-discharge, cyclic voltammetry and differential pulse voltammetry. The CTpPa-2/GCE exhibited remarkable electrocatalytic activity, and the electrochemical responses for BPA and BPS were found to be linear in the concentration ranges of 0.1–50 μM and 0.5–50 μM with detection limits of 0.02 μM and 0.09 μM (S/N = 3), respectively. Moreover, the fabricated sensor was utilized to determine BPA and BPS in bottle samples with recoveries of 87.0%–92.2% and migration rates of 13.2%–28.0%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call