Abstract

Formation of restrictive adhesions is one of the main obstacles in rehabilitation following hand surgery. Most experimental work, however, involves only a macroscopic and/or histologic evaluation of the amount of adhesions, and their functional characteristics are poorly described. The aim of this study was to develop an experimental technique for characterization of the biomechanical properties of the finger-tendon unit. An instrument was developed for continuous and simultaneous recording of tensile load, tendon excursion and angular rotation in the distal interphalangeal joint of rabbit digits. Utilizing this instrument, it was revealed that the first 50° of flexion required virtually no tensile load either in unoperated digits or immediately after tenorrhaphy. Thereafter, the load required to obtain further flexion was progressively increased. The strength of adhesions, determined 2 weeks after tenorrhaphy, was best expressed as the maximum tensile load recorded before 50° of flexion was reached. This measurement could also be used to register the strength of the tendon repair and to detect partial tendon rupture during the measurement. The technique allows both adequate measurements of the strength of the adhesions and of the tendon gliding ability after flexor tendon surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call