Abstract

The aim of this work was to characterize biogenic amines (BAs) in different parts of Lycium barbarum L. using HPLC with dansyl chloride derivatization, and jointly, to provide referential data for further exploration and utilization of Lycium barbarum L. The linear correlation coefficients for all BAs were above 0.9989. The limits of detection and quantification were 0.015–0.075 and 0.05–0.25 μg/mL, respectively. The relative standard deviations for the intra-day and inter-day precision were 0.66–2.69% and 0.91–4.38%. The described method has good repeatability and intermediate precision for the quantitative determination of BAs in different parts of Lycium barbarum L. Satisfactory recovery for all amines was obtained (79.3–110.3%). The result showed that there were four kinds of BAs. The highest putrescine content (20.9 ± 3.2 mg/kg) was found in the flower. The highest histamine content (102.7 ± 5.8 mg/kg) was detected in the bark, and the highest spermidine (13.3 ± 1.6 mg/kg) and spermine (23.7 ± 2.0 mg/kg) contents were detected in the young leaves. The high histamine (HIS) content in the bark may be one of the reasons why all of the parts of Lycium barbarum L., except the bark, are used for medicine or food in China. Meanwhile, the issue of the high concentration of HIS should be considered when exploiting or utilizing the bark of Lycium barbarum L.

Highlights

  • Biogenic amines (BAs), such as tyramine (TYR), methylamine (MET), histamine (HIS), putrescine (PUT), cadaverine (CAD), tryptamine (TRY), phenylethylamine (PEA), spermine (SPM), and spermidine (SPD), are endogenous and indispensable components to living cells, playing important roles in cell proliferation and differentiation, regulation of nucleic acid function, protein synthesis, brain development, and nerve growth and regeneration [1]

  • It was found that SPD and SPM potently inhibit oxidative stress in aging mice, which can increase the activity of antioxidant enzymes, reduce the accumulation of free radicals, improve the skeletal muscle cell membrane metabolism and anti-injury ability, and significantly delay the occurrence of mouse fatigue [6,7]

  • BAs in low concentrations are essential for many physiological functions; they can cause a variety of side effects in high concentrations, including rashes, headaches, nausea, hypo- or hyper-tension, cardiac palpitations, intracerebral hemorrhages, and anaphylactic shock, especially when alcohol or monoamine oxidase inhibitors are ingested at the same time [8]

Read more

Summary

Introduction

Biogenic amines (BAs), such as tyramine (TYR), methylamine (MET), histamine (HIS), putrescine (PUT), cadaverine (CAD), tryptamine (TRY), phenylethylamine (PEA), spermine (SPM), and spermidine (SPD), are endogenous and indispensable components to living cells, playing important roles in cell proliferation and differentiation, regulation of nucleic acid function, protein synthesis, brain development, and nerve growth and regeneration [1]. They have many biological activities, such as vasoconstriction [2], vasodilation [3], antioxidant [4], and promoting longevity [5].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call