Abstract
A generalization of the Compton method for determining elements with a low atomic number Z from 1 (H) to 9 (F) by the ratio of the intensities of incoherent (Compton) and coherent (Rayleigh) scattering is proposed. The generalization takes into account not only the dependence of this ratio on the effective atomic number of the scatterer material but also the momentum transfer variable x = . The new method is based on the application of calibration function of obtained by measuring scattering spectra at two values of x1= 0.831 Å−1 and x2= 1.297 Å−1 with a WDXRF spectrometer. The elemental atomic numbers and their concentrations of binary compounds with unknown compositions are determined by the solution of a system of linear equations. Coefficients of the equations are calculated from the measured ratios for the test sample and the regularization solution for the corresponding calibration. The experiments have been carried out for standard samples of single‐component, binary and triple stoichiometric compounds based on H, Li, Be, B, C, O and F. The identification of these elements was found to be possible in the absence of a relationship between the positions of scattering peaks and the composition of the sample, and a qualitative and quantitative analysis of the composition of the material was carried out as part of the solution of a single inverse problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.