Abstract

A headspace-hollow fiber solid-phase microextraction (HS-HFSPME) as a selective and sensitive procedure was developed to extract benzene, toluene, ethylbenzene, and p-xylene (BTEX) prior to their determination with gas chromatography-flame ionization detection. δ-Al2O3@SiO2@CTAB core–shell was synthesized as a novel sorbent for the BTEX extraction and enforced into the surface pores on the polypropylene hollow fiber (HF) using sol–gel procedure. The preparation of an HF device for HS-HFSPME can be highly regarded for creating a cheap disposable tool with no memory effects. A chemometric approach, including the Plackett–Burman design and the central composite design, was utilized to optimize the effective factors due to a low number of experiments and investigate the factor interaction. The method shows low LODs (≤ 0.01 ng ml−1), wide linearity, high preconcentration factor (≥ 265), and suitable RSDs (≤ 5.2%) toward the BTEX determination. The method was finally applied to measure BTEX in Buxus leaves and wastewater samples with high recoveries in the range of 89.7–103.4 and low RSD% in the range of 4.64–6.20%, showing the method has suitable recoveries and repeatability. The results confirm that the HS-HFSPME-GC/FID method is an excellent procedure to measure BTEX in various real samples such as plant and wastewater samples with great benefits such as low organic solvent consumption, simple operation, and high sensitivity for the BTEX determination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call