Abstract

The aim of this work was to quantify B-complex vitamins in pharmaceutical samples by surface enhanced Raman spectroscopy technique using gold colloid substrate. Synthesis of gold nanoparticles was performed according to an adapted Turkevich method. Initial essays were able to suggest the orientation of molecules on gold nanoparticles surface. Central Composite design was performed to obtain the highest SERS signal for nicotinamide and riboflavin. The evaluated parameters in the experimental design were volume of AuNPs, concentration of vitamins and sodium chloride concentration. The best condition for nicotinamide was NaCl 2.3×10−3molL−1 and 700μL of AuNPs colloid and this same condition showed to be adequate to quantify thiamine. The experimental design for riboflavin shows the best condition at NaCl 1.15×10−2molL−1 and 2.8mL of AuNPs colloid. It was possible to quantify thiamine and nicotinamide in presence of others vitamins and excipients in two solid multivitamin formulations using the standard addition procedure. The standard addition curve presented a R2 higher than 0.96 for both nicotinamide and thiamine, at orders of magnitude 10−7 and 10−8molL−1, respectively. The nicotinamide content in a cosmetic gel sample was also quantified by direct analysis presenting R2 0.98. The t-student test presented no significant difference regarding HPLC method. Despite the experimental design performed for riboflavin, it was not possible its quantification in the commercial samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call