Abstract

BackgroundSuccessful application of growth inhibition techniques for quantitative determination of bacteriocins relies on the sensitivity of the applied indicator microorganism to the bacteriocin to which is exposed. However, information on indicator microorganisms' performance and comparisons in bacteriocin determination with bioassays is almost non-existing in the literature. The aim of the present work was to evaluate the parameter "indicator microorganism" in bioassays carried out on solid -agar diffusion assay- and liquid -turbidometric assay- substrates, applied in the quantification of the most studied bacteriocin nisin.ResultsThe performance of characterized microorganisms of known sources, belonging to the genera of Lactobacillus, Pediococcus, Micrococcus and Leuconostoc, has been assessed in this work in the assays of plate agar diffusion and turbidometry. Dose responses and sensitivities were examined and compared over a range of assay variables in standard bacteriocin solutions, fermentation broth filtrates and processed food samples. Measurements on inhibition zones produced on agar plates were made by means of digital image analysis. The data produced were analyzed statistically using the ANOVA technique and pairwise comparisons tests. Sensitivity limits and linearity of responses to bacteriocin varied significantly among different test-microorganisms in both applied methods, the lower sensitivity limits depending on both the test-microorganism and the applied method. In both methods, however, only two of the nine tested microorganisms (Lactobacillus curvatus ATCC 51436 and Pediococcus acidilactici ATCC 25740) were sensitive to very low concentrations of the bacteriocin and produced a linear-type of response in all kinds of samples used in this work. In all cases, very low bacteriocin concentrations, e.g. 1 IU/ml nisin, were more accurately determined in the turbidometric assay.ConclusionThe present work shows that in growth inhibition techniques used in bacteriocin quantification, the choice of the indicator microorganism is critical. Evaluation of sensitivity levels and type of produced responses showed that they can vary widely among different test-microorganisms and different applied methods, indicating that not all microorganisms can be used successfully as indicators and that measurements of growth inhibition in liquid media produce more reliable results.

Highlights

  • Successful application of growth inhibition techniques for quantitative determination of bacteriocins relies on the sensitivity of the applied indicator microorganism to the bacteriocin to which is exposed

  • Bacteriocins are antimicrobial peptides or proteins produced by lactic acid bacteria (LAB)

  • Only nisin, the most studied bacteriocin produced by some strains of Lactococcus lactis, is produced commercially following designation as GRAS substance in the USA and specific approval in the EU

Read more

Summary

Introduction

Successful application of growth inhibition techniques for quantitative determination of bacteriocins relies on the sensitivity of the applied indicator microorganism to the bacteriocin to which is exposed. A major difficulty in bacteriocin research and applications is obtaining accurate quantification using bioassays which are based on the quantification of the inhibition produced in a sensitive microorganism [4,5,6,7]. These type of assays are the most widely used techniques for quantitative determination of bacteriocins. Growth inhibition techniques are still the most commonly used in everyday trials

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.