Abstract
Sustainability of agricultural systems has become an important issue all over the world. The activity of enzymes is potentially an important quality bioindicator in soils. The aim of the present study was to develop a simple and convenient assay to determine the activity of arylsulphatase (AS), acid (ACP) and alkaline phosphatase (ALP) in agricultural soil. The activities of these enzymes were detected using a non-electroactive substrate, which produces an electroactive product. To this end, p-aminophenyl phosphate (pAPP) was used as a substrate which is converted to p-aminophenol (pAP) after enzymatic dephosphorylation; and 4-nitrocatechol sulphate (4-NCS) was used as a substrate for AS activity based on its catalytic effect on the hydrolysis of 4-NCS into 4-nitrocatechol (4-NC). The products of both enzymatic reactions were quantified on carbon-based screen-printed electrodes (SPCEs) modified with carbon nanotubes (CNTs), using Osteryoung square-wave voltammetry (OSWV). The determination of the reaction products allowed more sensitive determination of ALP, ACP and AS activities in soil than that obtained with a spectrophotometric method. This assay also diminishes the generation of waste, which is desirable in green analytical chemistry. The optimization of the analytical procedure in terms of the nature of electrode type, applied potential, pH of solution, and precision of measurements is reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.