Abstract
The total phenolic content (TPC) and antioxidant capacity (TAC) of haskap berries cultivated in various locations across Alberta were analyzed using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The Folin–Ciocalteu assay was used to determine TPC, while TAC was quantified by 2,2-diphenyl-1-picrylhydrazl radicals (DPPH) assay and oxygen radical absorbance capacity (ORAC) assay. Three tenfold cross-validated partial least-squares regression (PLSR) models and three fivefold cross-validated deep learning models were developed separately based on FT-IR spectra collected from 22 haskap berry samples and their corresponding reference values determined through Folin-Ciocalteu, DPPH, and ORAC assays. The deep learning models (R2 = 0.95, 0.93, and 0.90 for Folin-Ciocalteu, DPPH, and ORAC assays, respectively) demonstrated better prediction capability compared to the PLSR models (R2 = 0.74, 0.72, and 0.66 for Folin-Ciocalteu, DPPH, and ORAC assays, respectively). In addition, PLS loading plots indicated that phenolic contents and polysaccharides in haskap berries could contribute to their antioxidant capacity. Using ATR-FTIR to estimate the TPC and TAC of fruits offers a rapid alternative to the conventional chemical assays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.