Abstract

Candidiasis is a major health concern causing both morbidity and mortality. The increasing prevalence of antimicrobial-resistant fungi associated with life-threatening systemic mycoses, led a constant need for new antifungal agents. Herbal medicines have been tried for this purpose for centuries. The antifungal effect of fig tree latex has been reported and some trace elements such as zinc were associated with antifungal effects. The aim of this study was to determine the trace element content and in-vitro antifungal activity of fig tree latex sample against C. albicans, C. glabrata, C. tropicalis and C. Krusei. Fig tree latex samples were obtained from four different fig tree at Trabzon province in July 2019. The broth microdilution technique was performed to investigate antifungal activity against standard Candida strains and trace elements level were detected with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) analyzer. The most powerful antifungal activity was reached at a concentration of 0.5 for C. albicans and C. tropicalis, and at a concentration of 0.125 for C. krusei and C. glabrata in fig tree latex. According to trace element analysis, magnesium had the highest level, followed by calcium and phosphorus. Selenium, aluminium, lead and nickel levels were too low to be measured. As a conclusion, fig tree latex has an antifungal potential against Candida species and this may be caused by the high level of magnesium that it contains, however more studies are needed to understand the therapeutic effects of fig tree latex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call