Abstract

BackgroundAntimicrobial resistance is currently a major global issue. As the rate of emergence of antimicrobial resistance has superseded the rate of discovery and introduction of new effective drugs, the medical arsenal now is experiencing shortage of effective drugs to combat diseases, particularly against diseases caused by the dreadful multidrug-resistant strains, such as the methicillin-resistant Staphylococcus aureus (MRSA). The ability of fly larvae to thrive in septic habitats has prompted us to determine the antibacterial activity and minimum inhibitory concentrations (MICs) of larval extract of flies, namely Lucilia cuprina, Sarcophaga peregrina and Musca domestica against 4 pathogenic bacteria [Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa and Escherichia coli] via a simple and sensitive antibacterial assay, resazurin-based turbidometric (TB) assay as well as to demonstrate the preliminary chemical profile of larval extracts using gas chromatography-mass spectrophotometry (GC-MS).ResultsThe resazurin-based TB assay demonstrated that the L. cuprina larval extract was inhibitory against all tested bacteria, whilst the larval extract of S. peregrina and M. domestica were only inhibitory against the MRSA, with a MIC of 100 mg ml-1. Subsequent sub-culture of aliquots revealed that the larval extract of L. cuprina was bactericidal against MRSA whilst the larval extracts of S. peregrina and M. domestica were bacteriostatic against MRSA. The GC-MS analysis had quantitatively identified 20 organic compounds (fatty acids or their derivatives, aromatic acid esters, glycosides and phenol) from the larval extract of L. cuprina; and 5 fatty acid derivatives with known antimicrobial activities from S. peregrina and M. domestica.ConclusionThe resazurin-based turbidometric assay is a simple, reliable and feasible screening assay which evidently demonstrated the antibacterial activity of all fly larval extracts, primarily against the MRSA. The larval extract of L. cuprina exerted a broad spectrum antibacterial activity against all tested bacteria. The present study revealed probable development and use of novel and effective natural disinfectant(s) and antibacterial agent(s) from flies and efforts to screen more fly species for antibacterial activity using resazurin-based TB assay should be undertaken for initial screening for subsequent discovery and isolation of potential novel antimicrobial substances, particularly against the multi-drug resistant strains.

Highlights

  • Antimicrobial resistance is currently a major global issue

  • In order to protect themselves from the undesirable effects of these microbes, insect immatures are known to produce and secrete potent anti-microbial substances [1, 4, 10, 16, 17] which may be the potential sources of novel antibiotics, especially for treatment of diseases caused by the multi-drug resistance strains such as the methicillin-resistant Staphylococcus aureus (MRSA)

  • The larval extract of L. cuprina was active against both P. aeruginosa and E. coli at Minimum Inhibitory Concentration (MIC) of 100 mg ml-1, similar to those observed in S. aureus, larval extracts of S. peregrina and M. domestica did not exhibit any antibacterial activity against these gram-negative bacteria

Read more

Summary

Introduction

As the rate of emergence of antimicrobial resistance has superseded the rate of discovery and introduction of new effective drugs, the medical arsenal now is experiencing shortage of effective drugs to combat diseases, against diseases caused by the dreadful multidrug-resistant strains, such as the methicillin-resistant Staphylococcus aureus (MRSA). In order to protect themselves from the undesirable effects of these microbes, insect immatures are known to produce and secrete potent anti-microbial substances [1, 4, 10, 16, 17] which may be the potential sources of novel antibiotics, especially for treatment of diseases caused by the multi-drug resistance strains such as the methicillin-resistant Staphylococcus aureus (MRSA)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.