Abstract

Global concerns stem from the environmental crisis have compelled researchers to develop selective and sensitive methods for the identification and measurement of emerging pollutants in the environmental matrices. The cationic F-TMU-66+Cl-/polyvinylidene fluoride metal-organic frameworks (MOFs) mixed matrix membrane (F-TMU-66+Cl-/PVDF MMM) was synthesized and used as a versatile adsorbent with multiple binding sites for the simultaneous extraction of twelve anionic perfluorinated compounds (PFCs) from reservoir water samples. The physical and chemical characteristics of the materials, as well as adsorption mechanism were fully surveyed by various instrumental techniques. Important extraction parameters, including amount of MOFs, pH, desorption conditions, and salinity were systematically investigated and optimized. The combination of dispersive membrane solid extraction based on F-TMU-66+Cl-/PVDF MMM with ultra-high performance liquid chromatography-tandem mass spectrometry provided ultra-low limit of detections within the range of 0.03–0.48 ng/L. By virtue of the simplicity and robustness of the extraction procedure, high sensitivity of detection scheme, good stability and selectivity of the F-TMU-66+Cl-/PVDF MMM, the developed method exhibits excellent practicability for ultra-trace analysis of anionic PFCs in water samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call