Abstract

A simple gas chromatography-mass spectrometry (GC-MS) procedure has been developed for the main metabolites of organophosphorus nerve agents, alkylmethylphosphonic acids (AMPAs; alkyl = Et, i-Pr, and pinacolyl) in biofluids via extractive pentafluorobenzylation. The derivatization was carried out under liquid-liquid-solid-phase-transfer conditions using a polymer-bound tri-n-butylmethylphosphonium bromide as a catalyst. AMPAs in aqueous samples were semiquantitatively extracted into a small-volume organic layer as their pentafluorobenzyl derivatives at pH 4.5 (85 degrees C). Sample pretreatments for urine, serum, and saliva were each examined to minimize matrix interference. The detection limits of APMAs by electron-impact ionization GC-MS were around 50 ng/mL and 2.5-10 ng/mL in the full-scan and selected-ion monitoring modes, respectively. In order to detect trace-level AMPAs, negative-ion chemical ionization (NICI) was also employed to enhance sensitivity. The detection limits of AMPAs in biofluids were typically 60 pg/mL by GC-NICI-MS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.