Abstract

Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS) are used to evaluate the alkali metal ion binding selectivities of a series of calixarenes. Each calixarene of interest is mixed with one or more alkali metal salts (1:100 ratio of calixarene to metal), either in the ESI solution or on the MALDI probe surface, and the relative binding selectivities are directly determined from the intensities of the calixarene/metal complexes in the mass spectra. For t-butylcalix[4]arene-tetraacetic acid tetraethyl ester (calixarene 1), complexation of Na + is favored over complexation of K +, in agreement with prior solution results obtained by conventional methods. For the three calixarenes that do not have t-butyl groups on the upper rims, the calixarenes preferentially bind K + over Na +, thus demonstrating that size selective complexation can be probed with both the ESI and MALDI methods. Collision-activated dissociation results indicate that the phenyl oxygens, but not necessarily the ethoxy ethyl oxygens of the lower rims, are the primary binding sites for the alkali metal ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call