Abstract

The utilization of aluminum-lithium-magnesium (Al-Li-Mg) alloys in the transportation industry is enabled by excellent engineering properties. The mechanical properties and corrosion resistance are influenced by the microstructure development comprehending the solidification of coherent strengthening precipitates, precipitation of course and angular equilibrium phases as well as the formation and widening of the Precipitate-free zone. The research was performed to determine the microstructure degradation of Al-2.18Mg-1.92Li alloy in a corrosive environment using electrochemical measurements. The solidification sequence of the Al-2.18Mg-1.92Li alloy, obtained using Thermo–Calc software support, indicated the transformation of the αAl dendritic network and precipitation of AlLi (δ), Al2LiMg (T), and Al8Mg5 (β) phase. All of the phases are anodic with respect to the αAl enabling microstructure degradation. To achieve higher microstructure stability, the sample was solution hardened at 520 °C. However, the sample in as-cast condition showed a lower corrosion potential (−749.84 mV) and corrosion rate (17.01 mm/year) with respect to the solution-hardened sample (−752.52 mV, 51.24 mm/year). Higher microstructure degradation of the solution-hardened sample is a consequence of δ phase precipitation at the grain boundaries and inside the grain of αAl, leading to intergranular corrosion and cavity formation. The δ phase precipitates from the Li and Mg enriched the αAl solid solution at the solution-hardening temperature.

Highlights

  • IntroductionEach 1 wt.% of Li added decreases density by 3%

  • Synthesis was performed in the newnewused) graphite crucible concontaining a sufficient amount of carbon necessary to achieve andthe retain the tempermelting taining a sufficient amount of carbon necessary to achieve and retain melting temperature of the raw materials

  • The non-equilibrium solidification sequence comprehended the transformation of the αAl dendritic network followed by the solidification of δ and T phases at higher temperatures with respect to the equilibrium solidification sequence

Read more

Summary

Introduction

Each 1 wt.% of Li added decreases density by 3%

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call