Abstract

The aim of the study was to prepare potentially cheaper carbon for the adsorptive removal of Nickle [Ni (II)] from aqueous solution. The adsorption capacity of the prepared carbon to remove Ni (II) from aqueous solution was determined and adsorption mechanism was investigated. Rice husk carbon was prepared by incineration in a muffle furnace. The incinerated rice husk carbon (IRHC) was characterised in terms of surface area, micropore area, micropore volume, average pore diameter and surface morphology. Adsorption of Ni (II) by IRHC was examined. The influence of operating parameters, namely, pH, initial concentration and contact time on adsorption of Ni (II) by IRHC was evaluated. Batch adsorption tests showed that extent of Ni (II) adsorption depended on initial concentration, contact time and pH. Equilibrium adsorption was achieved in 120 min, while maximum Ni (II) adsorption occurred at pH 4. Langmuir and Freundlich isotherms were studied and the equilibrium adsorption data was found to fit well with the Langmuir isotherm model. Langmuir constants Q° and b were 14.45 and 0.10, and Freundlich constants Kf and 1/n were 4.0 and 0.26, respectively. Adsorption of Ni (II) by IRHC followed pseudo-second-order kinetics. Being a low-cost carbon, IRHC has potential to be used for the adsorption of Ni (II) from aqueous solution and wastewater in developing countries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.