Abstract

Electromagnetic radiation used to determine ranges passes through media with different characteristics that affect the electromagnetic waves propagation speed and, accordingly, the accuracy of distance determination. The problem of the radio signal delay due to the influence of the atmosphere is an urgent problem, the solution of which is currently limited mainly to the calculation of range corrections using various atmospheric models. Depending on the required accuracy, the length of the measured line, the range of zenith distances, the availability of information about the state of the atmosphere, a flat, spherical, ellipsoidal model of atmospheres is used to determine the range corrections. In view of the fact that the parameters of the atmosphere characterizing its state along the electromagnetic wave path at the time of measurement, as a rule, are unknown, it becomes necessary to apply one or another hypothesis about the distribution of atmospheric parameters with height. In this paper, we propose a solution to the problem of determining corrections to the measured ranges from the known parameters of the atmosphere only at the initial and final points of the electromagnetic waves’ trajectory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call