Abstract

The acidity constant in the form of pKa is one of the most important physicochemical quantities. There are prediction tools available for calculating the pKa , but they only deliver precise calculated values for a relatively small set of chemicals. For complex structures with multiple functional groups in particular, the error in the predicted pKa is high due to the application domain of the corresponding models. Thus, we aim to enlarge the dataset of experimentally determined pKa values using capillary electrophoresis. We, therefore, selected various pyridines, imidazoles, and oximes to determine the pKa values using the internal standard approach and the classical method. Especially oximes were not investigated in the past, and predictions for them include larger errors. Thus, our experimentally determined values could contribute to an improved understanding of various functional groups impacting the pKa values and serve as additional datasets to develop improved pKa prediction tools.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.