Abstract

Acetamiprid (ACE) is widely used in various vegetables to control pests, resulting in residues and posing a threat to human health. For the rapid detection of ACE residues in vegetables, an indirect competitive chemiluminescence enzyme immunoassay (ic-CLEIA) was established. The optimized experimental parameters were as follows: the concentrations of coating antigen (ACE-BSA) and anti-ACE monoclonal antibody were 0.4 and 0.6 µg/mL, respectively; the pre-incubation time of anti-ACE monoclonal antibody and ACE (sample) solution was 30 min; the dilution ratio of goat anti-mouse-HRP antibody was 1:2500; and the reaction time of chemiluminescence was 20 min. The half-maximum inhibition concentration (IC50), the detection range (IC10–IC90), and the detection limit (LOD, IC10) of the ic-CLEIA were 10.24, 0.70–96.31, and 0.70 ng/mL, respectively. The cross-reactivity rates of four neonicotinoid structural analogues (nitenpyram, thiacloprid, thiamethoxam, and clothianidin) were all less than 10%, showing good specificity. The average recovery rates in Chinese cabbage and cucumber were 82.7–112.2%, with the coefficient of variation (CV) lower than 9.19%, which was highly correlated with the results of high-performance liquid chromatography (HPLC). The established ic-CLEIA has the advantages of simple pretreatment and detection process, good sensitivity and accuracy, and can meet the needs of rapid screening of ACE residues in vegetables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call