Abstract

The most recent statement published by the International Commission on Radiological Protection describes a reduction in the maximum allowable occupational eye lens dose from 150 to 20 mSv/year (averaged over 5‐year periods). Exposing the eye lens to radiation is a concern for nuclear medicine staff who handle radionuclide tracers with various levels of photon energy. This study aimed to define the optimal dosimeter and means of measuring the amount of exposure to which the eye lens is exposed during a routine nuclear medicine practice. A RANDO human phantom attached to Glass Badge and Luminess Badge for body or neck, DOSIRIS and VISION for eyes, and nanoDot for body, neck, and eyes was exposed to 99mTc, 123I, and 18F radionuclides. Sealed syringe sources of each radionuclide were positioned 30 cm from the abdomen of the phantom. Estimated exposure based on measurement conditions (i.e., air kerma rate constants, conversion coefficient, distance, activity, and exposure time) was compared measured dose equivalent of each dosimeter. Differences in body, neck, and eye lens dosimeters were statistically analyzed. The 10‐mm dose equivalent significantly differed between the Glass Badge and Luminess Badge for the neck, but these were almost equivalent at the body. The 0.07‐mm dose equivalent for the nanoDot dosimeters was greatly overestimated compared to the estimated exposure of 99mTc and 123I radionuclides. Measured dose equivalents of exposure significantly differed between the body and eye lens dosimeters with respect to 18F. Although accurately measuring radiation exposure to the eye lenses of nuclear medicine staff is conventionally monitored using dosimeters worn on the chest or abdomen, eye lens dosimeters that provide a 3‐mm dose equivalent near the eye would be a more reliable means of assessing radiation doses in the mixed radiation environment of nuclear medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.