Abstract

The present investigation is based on a new quadratic equation that links the principal stresses σ1 and σ3 at the moment of failure, which allows to obtain the strength in rocks and brittle materials such as concrete. Through this new empirical two-dimensional failure criterion, the normal stress acting on the fracture plane is determined in the first calculation phase by solving the first order linear differential equation, and subsequently the shear streng‘th envelope. To facilitate the calculations, the expression that relates the major and minor principal stresses σ1 and σ3 at failure are defined for a parabolic equation and presented in normalized form. Thus, the algebraic curve is expressed as a function of (σ3/σc) and the parameter ξ. Where, σcrepresents the uniaxial compressive strength of intact rock (rock matrix) or concrete at 28 days, $$f_{c}^{{^{\prime}}}$$ , and on the other hand, ξ = (σt/σc) is a dimensionless parameter whose quotient is obtained by dividing the tensile strength σt by σc. Through the procedure described on this research (Focus Procedure) the parameters k1 and k2 that relate the principal stresses are determined with a good approximation grade through the relation ξ = (σt/σc), both in the intact rock condition as a function of rock mass quality index. All of this, with the additional advantage, that it is not required to know the interval of the principal failure stress (σ3, σ1) through the experimental tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call