Abstract

Plasmon properties such as peak position, extinction cross-section and local electric field intensity are strongly dependent on excited, localized surface plasmon resonance (LSPR) modes. In non-spherical copper chalcogenide nanoparticles, assignment of the LSPR peaks to the corresponding oscillation modes has been controversial and requires experimental verification. We determined the in-plane LSPR mode of roxbyite Cu7S4 nanodisks from the plasmon coupling effect of nanodisks in solution. Compared with individual Cu7S4 nanodisks, self-assembled Cu7S4 nanodisk arrays in chloroform exhibited a blue-shifted LSPR peak with weaker optical density. This strongly suggests that the singular LSPR peak in the near-infrared region mainly originates from the in-plane oscillation mode. In addition, we demonstrate that the same LSPR peak can be readily tuned by controlling the number of disks in the array.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call