Abstract

The experimental determination of average mass by mass spectrometry is limited for large molecules due to the negative bias introduced by the natural distribution of isotopic abundances. This results in the measurement of the top-of-centroid (ToC) as opposed to the true centroid. We have developed a practical correction factor that is applied to the ToC measurement to largely remove the systematic bias introduced by nature. The correction factor is calculated easily using the average molecular mass (<100 kDa) of the analyte molecule and the full-width half maximum resolving power (<3,500) of the measurement. In addition, an approach to calculating resolving power is described that accurately predicts resolving power achievable for Fourier transform ion cyclotron resonance (FT-ICR) mass analysis of large molecules. A combination of internal calibration with a dual-electrospray source and application of the correction factor to average mass measurements improved the mass error from 192.5 to -35.0 ppm for a 44 kDa PCR amplicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call