Abstract

Based on previous research, the sampling and analysis methods for phthalate esters (PAEs) were improved by increasing the sampling flow of indoor air from 1 to 4L/min, shortening the sampling duration from 8 to 2hr. Meanwhile, through the optimization of chromatographic conditions, the concentrations of 9 additional PAE pollutants in indoor air were measured. The optimized chromatographic conditions required a similar amount of time for analysis as before, but gave high responsivity, the capability of simultaneously distinguishing 15 kinds of PAEs, and a high level of discrimination between individual sample peaks, as well as stable peak generation. The recovery rate of all gas-phase and particle-phase samples of the 15 kinds of PAEs ranged from 91.26% to 109.42%, meeting the quantitative analysis requirements for indoor and outdoor air sampling and analysis. For the first time, investigation of the concentration levels as well as characteristics of 15 kinds of PAEs in the indoor air from four different traffic micro-environments (private vehicles, busses, taxis and subways) was carried out, along with validation of the optimized sampling and analytical method. The results show that all the 9 additional PAEs could be detected at relatively high pollution levels in the indoor air from the four traffic micro-environments. As none of the pollution levels of the 15 kinds of PAEs in the indoor air from the 4 traffic micro-environments should be neglected, it is of great significance to increase the types of PAEs able to be detected in indoor air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.