Abstract

A gas chromatography-tandem mass spectrometry (GC-MS/MS) method was established for the determination of 10 volatile N-nitrosamines in meat products. The meat samples were extracted by simultaneous distillation extraction (SDE), and then a cleanup step involving the frozen fat removal method was applied. The analytes were quantified by the external standard method in multiple reaction monitoring (MRM) mode. Under the optimized conditions, the correlation coefficients of the standard calibration curves were greater than 0.99 in the range of 1.00-1000 μg/L. The limits of detection (LODs, S/N=3) and limits of quantification (LOQs, S/N=10) were 0.01-0.02 μg/kg and 0.04-0.07 μg/kg, respectively. The average spiked recoveries of the 10 volatile N-nitrosamines were 74.8%-94.3% at spiked levels of LOQ level, 1.0 and 2.0 μg/kg,and the relative standard deviations were less than 8.3%. Six volatile N-nitrosamines (N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosopyrrolidine (NPYR), N-nitrosopiperidine (NPIP), N-nitrosodibutylamine (NDBA) and N-nitrosodi-n-propylamine (NDPA)) were detected in different types of meat products, and each volatile N-nitrosamine in pickled meat products had the highest detection values. The developed method has the advantages of simplicity, sufficient extraction, high sensitivity, and low reagent dosage, in addition to proving suitable for the daily testing requirements of a large number of samples in the laboratory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.