Abstract

The high-temperature characteristics of iron ores play important roles in optimizing ore proportion of sintering, which are tested by using iron-ore fines and analytical reagent CaO as raw materials. Two calculation methods of CaO addition amount based on binary basicity (basicity method) and n(Fe2O3)/n(CaO) (mole ratio method), respectively, were employed to evaluate the liquid phase fluidity (LPF) and the capability of calcium ferrite formation (CCFF) of iron ores. The results show that the rule of LPF of iron ores under the mole ratio method is different from that with basicity method. The LPF measured by basicity method has a linear positive correlation with the SiO2 content, and there is no linear relationship between LPF and Al2O3 content or mass loss on ignition, which are inconsistent with the results of the previous study. And the results of CCFF with low SiO2 content ( 7 wt.%) based on basicity method cannot reflect the true CCFF. The mole ratio method could successfully solve this problem by reducing the effect of CaO addition amount changes caused by SiO2 content of iron ores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call