Abstract

Recently, the harmonic troubles in a distribution network are worried in the background of the increase of the connection of distributed generation (DG) and the spread of the power electronics equipments. As one of the strategies, control the harmonic voltage by installing an active filter (AF) has been researched. In this paper, the authors propose a computation method to determine the optimal allocations, gains and installation number of AFs so as to minimize the maximum value of voltage total harmonic distortion (THD) for a distribution network with DGs. The developed method is based on particle swarm optimization (PSO) which is one of the nonlinear optimization methods. Especially, in this paper, the case where the harmonic voltage or the harmonic current in a distribution network is assumed by connecting many DGs through the inverters, and the authors propose a determination method of the optimal allocation and gain of AF that has the harmonic restrictive effect in the whole distribution network. Moreover, the authors propose also about a determination method of the necessary minimum installation number of AFs, by taking into consideration also about the case where the target value of harmonic suppression cannot be reached, by one set only of AF. In order to verify the validity and effectiveness of the proposed method, the numerical simulations are carried out by using an analytical model of distribution network with DGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.