Abstract

A suite of impact experiments was conducted to assess spatial variability in the dynamic properties of tantalum, on length scales of tens of microns to a few millimeters. Two different sample types were used: tantalum processed to yield a uniform refined grain structure (grain size ∼20 μm) with a strong axisymmetric {1 1 1} crystallographic texture, and tantalum processed to yield an equiaxial structure with grain size ∼42 μm. Impact experiments were conducted loading the samples to stress levels from 6 to 12 GPa, which are well above the Hugoniot Elastic Limit (HEL), then pulling the sample into sufficient tension to produce spall. These stress levels were specifically chosen to investigate the spall behavior of tantalum at levels ranging from the incipient spall stage to significantly above the spall strength, focusing on microstructural phenomena. A recently developed spatially resolved velocity interferometer known as the line-imaging VISAR allowed the point-to-point variability of the spall strength to be determined. Specifically, we have been able to determine in real time the nucleation and growth of void defect structures that lead to the eventual spallation or delaminating of the plate. Experiments indicate that the nucleation and growth process is time-dependent and heterogeneous since a time-dependent distribution of defects is measured. This strongly suggests that the spall strength of the material is not a single-valued function. When fitted to Weibull failure statistics, the results indicate a similar mean value and variability for the spall strength of both types of tantalum. The spatial dependence of the material distension of the spalled tantalum is also deduced, in the approximation of uniaxial strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.