Abstract

A rat brain cDNA clone containing an open reading frame encoding the neuron-specific protein synapsin I has been sequenced. The sequence predicts a protein of 691 amino acids with a mol. wt of 73 kd. This is in excellent agreement with the size of rat brain synapsin Ib measured by SDS--polyacrylamide gel electrophoresis. Inspection of the predicted primary structure has revealed the probable sites for synapsin I phosphorylation by the cAMP-dependent and Ca2+/calmodulin-dependent protein kinases. All of the biochemically observed intermediates of synapsin I digestion by collagenase can be verified by inspection of the sequence, and the collagenase-resistant fragment has been defined as the amino-terminal 439 amino acids of the molecule. Predictions of sequence secondary structure and hydrophobicity suggest that a central domain of approximately 270 amino acids may exist as a folded, globular core. The carboxyl-terminal domain of the protein (the region sensitive to collagenase digestion) contains sites for Ca2+/calmodulin-dependent protein kinase phosphorylation. These sites are flanked by three regions of repeating amino acid sequence that are proposed to be the synaptic vesicle-binding domain of synapsin I. This region also shares homology with the actin-binding proteins profilin and villin. The characteristics of the synapsin I sequence do not support extensive homology with the erythrocyte cytoskeletal protein 4.1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call