Abstract
Summary The determinants of saprotrophic or predatory modes of the nematophagous fungus Arthrobotrys oligospora were investigated in soil microcosms and on solid nutrient media. A sterilized soil amended with 1% w/w alfalfa meal (C:N=32) and inoculated with conidia of A. oligospora , showed lower mycelium biomass and higher specific rate of conidia production in the presence of the bacterivorous nematode Caenorhabditis elegans than in its absence. As few as 10 nematodes g −1 soil were sufficient to enhance spore formation by the vegetative mycelium. Given that the fungus was not limited by available carbon and nitrogen, this indicates that nematodes provide essential growth factors regulating the development of A. oligospora. Carbon mineralisation by A. oligospora, measured as the rate of CO 2 production, was found to be 25–35% lower in the presence of 20–60 C. elegans g −1 soil compared to soil without nematodes. This showed that A. oligospora had lower saprotrophic activity in the predaceous phase. Trap formation and nematophagous activity of A. oligospora were observed only where conidia were inoculated on nutrient poor medium (water agar), on low-nitrogen medium (Yeast Carbon Base agar) or on medium containing no amino-acids or vitamins (Czapek-Dox agar). A. oligospora did not form trapping structures when grown on nutrient-rich media containing three amino-acids ( l -histidine monohydrocloride, dl -methionine and dl -tryptophan) and vitamins (biotin, calcium pantothenate, folic acid, inositol, niacin, p -aminobenzoic acid, pyridoxine hydrochloride, riboflavine, thiamine hydrochloride). It is concluded that predaceous behaviour of A. oligospora can be regulated either by nitrogen sources or by physiologically active compounds (amino-acids or vitamins) present in nematodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Pedobiologia - International Journal of Soil Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.