Abstract

Top-down cascade effects are among the most important mechanisms underlying community structure and abundance dynamics in aquatic and terrestrial ecosystems worldwide. A current challenge is understanding the factors controlling trophic cascade strength under global environmental changes. Here, we synthesized 161 global sites to analyze how multiple factors influence consumer-resource interactions with fish in freshwater ecosystems. Fish have a profound negative effect on zooplankton and water clarity but positive effects on primary producers and water nutrients. Furthermore, fish trophic levels can modify the strength of trophic cascades, but an even number of food chain length does not have a negative effect on primary producers in real ecosystems. Eutrophication, warming, and predator abundance strengthen the trophic cascade effects on phytoplankton, suggesting that top-down control will be increasingly important under future global environmental changes. We found no influence or even an increasing trophic cascade strength (e.g., phytoplankton) with increasing latitude, which does not support the widespread view that the trophic cascade strength increases closer to the equator. With increasing temporal and spatial scales, the experimental duration has an accumulative effect, whereas the experimental size is not associated with the trophic cascade strength. Taken together, eutrophication, warming, temporal scale, and predator trophic level and abundance are pivotal to understanding the impacts of multiple environmental factors on the trophic cascade strength. Future studies should stress the possible synergistic effect of multiple factors on the food web structure and dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call