Abstract

We have examined the steady-state and time-dependent electrical properties of a model membrane system. The model assumes that the directed velocity and energy of ions moving through the membrane are determined by the applied electric field, ionic diffusion forces, and central elastic collisions between ions and membrane molecules. A simple analysis of the steady-state electrical properties of the model yields results identical with ones obtained previously using a more complex analysis procedure. The time-dependent conductance changes of the model in response to a step change in electric field strength when there is solution symmetry display three qualitative patterns dependent on the nature of the ion-membrane molecule interaction. One of the patterns of conductance change is quite similar to that observed in the sodium conductance system of a number of excitable tissues: an initial conductance rise to a maximum (activation) followed by a decay to a final steady-state value (inactivation). However, the correspondence between the time-dependent model behavior and known experimental behavior of excitable systems is only qualitative. We conclude that the classical ion-membrane molecule interactions we consider are not involved in determining time-dependent conductance processes in the excitable systems for which comparison is possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.