Abstract

In 24 patients with dual atrioventricular (AV) nodal pathways, multiple incremental atrial pacing studies were performed to obtain atrial (A) to His (H) basic driven (A 1 and H 1) and extrastimulus (A 2 and H 2) intervals. Discontinuous A 1-A 2 and H 1-H 2 intervals were analyzed for relations between initial coupling times and subsequent A-H responses, and to examine curves of sequential paced cycle lengths (A-A intervals) versus A-H intervals. Seventeen patients showed sustained slow pathway (SP) conduction with demonstration of discontinuous A-A and A-H curves. Sustained SP conduction occurred at critical atrial paced rates when the first paced beat was blocked in the fast pathway (FP) with conduction via the SP. Eleven of these 17 patients had inducible sustained supraventricular tachycardia (SVT). A-H interval during SVT in these 11 patients was closely related to SP A-H interval during atrial pacing at the paced rate comparable to SVT rate ( r = +0.89, p < 0.001). The seven remaining patients showed continuous A-A and A-H curves. In three of these seven patients, sustained SVT was inducible, suggesting ability to sustain SP conduction. All of these three patients had continuous A 1-A 2 and H 1-H 2 curves during sinus rhythm so that the first atrial paced beat could not be blocked in the FP for subsequent SP conduction. In the other four of the remaining seven patients, despite block of the first atrial paced beat in the FP with SP conduction, the second paced beat was blocked in the SP so that all subsequent beats resumed FP conduction. In conclusion, sustalned SP conduction in patients with dual AV nodal pathways requires (1) an initiating beat being blocked in the FP, (2) a critical rate cycle length, and (3) the ability of SP for repetitive conduction at critical rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.