Abstract

Leaf characteristics reflecting the size, lifespan (longevity), moisture content (degree of succulence) and complexity of structure of 20 mangrove species were studied over several years at 13 locations along the tropical and subtropical Australian coast. These characteristics were found to fall generally within the ranges of those for woody species from other ecosystems. With the exception of one species, it was found that leaf longevity was related inversely to leaf moisture content, increasing from nearly 6 months in more succulent species to over 2 years in less succulent species. This suggested that more succulent leaves are less complex in their structure because they have less well-developed ability to compartmentalize salt. There was a tendency also for leaf longevity to increase in species with larger leaves. These findings were consistent with the general view for land plants that leaf longevity is greater in species that have developed tolerance to environmental stress, salt particularly in the case of mangroves. Leaf tissue in such species is more robust or complex and requires greater metabolic resources in its construction; the plant is then advantaged by retaining the tissue for longer periods. Classification of the species considered here, based on their leaf longevity, moisture content and complexity, identified phylogenetically related species groupings that reflected these leaf longevity effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call