Abstract
Robotic-assisted bronchoscopy (RAB) is an emerging modality to sample pulmonary lesions. Cone-beam computed tomography (CBCT) can be incorporated into RAB. We investigated the magnitude and predictors of patient and staff radiation exposure during mobile CBCT-guided shape-sensing RAB. Patient radiation dose was estimated by cumulative dose area product (cDAP) and cumulative reference air kerma (cRAK). Staff equivalent dose was calculated based on isokerma maps and a phantom simulation. Patient, lesion and procedure-related factors associated with higher radiation doses were identified by logistic regression models. A total of 198 RAB cases were included in the analysis. The median patient cDAP and cRAK were 10.86 Gy cm2 (IQR: 4.62-20.84) and 76.20 mGy (IQR: 38.96-148.38), respectively. Among staff members, the bronchoscopist was exposed to the highest median equivalent dose of 1.48 μSv (IQR: 0.85-2.69). Both patient and staff radiation doses increased with the number of CBCT spins and targeted lesions (p < 0.001 for all comparisons). Patient obesity, negative bronchus sign, lesion size <2.0 cm and inadequate sampling by on-site evaluation were associated with a higher patient dose, while patient obesity and inadequate sampling by on-site evaluation were associated with a higher bronchoscopist equivalent dose. The magnitude of patient and staff radiation exposure during CBCT-RAB is aligned with safety thresholds recommended by regulatory authorities. Factors associated with a higher radiation exposure during CBCT-RAB can be identified pre-operatively and solicit procedural optimization by reinforcing radiation protective measures. Future studies are needed to confirm these findings across multiple institutions and practices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.