Abstract

To test whether active hyperventilation activates the "afterdischarge" mechanism during non-rapid-eye-movement (NREM) sleep, we investigated the effect of abrupt termination of active hypoxia-induced hyperventilation in normal subjects during NREM sleep. Hypoxia was induced for 15 s, 30 s, 1 min, and 5 min. The last two durations were studied under both isocapnic and hypocapnic conditions. Hypoxia was abruptly terminated with 100% inspiratory O2 fraction. Several room air-to-hyperoxia transitions were performed to establish a control period for hyperoxia after hypoxia transitions. Transient hyperoxia alone was associated with decreased expired ventilation (VE) to 90 +/- 7% of room air. Hyperoxic termination of 1 min of isocapnic hypoxia [end-tidal PO2 (PETO2) 63 +/- 3 Torr] was associated with VE persistently above the hyperoxic control for four to six breaths. In contrast, termination of 30 s or 1 min of hypocapnic hypoxia [PETO2 49 +/- 3 and 48 +/- 2 Torr, respectively; end-tidal PCO2 (PETCO2) decreased by 2.5 or 3.8 Torr, respectively] resulted in hypoventilation for 45 s and prolongation of expiratory duration (TE) for 18 s. Termination of 5 min of isocapnic hypoxia (PETO2 63 +/- 3 Torr) was associated with central apnea (longest TE 200% of room air); VE remained below the hyperoxic control for 49 s. Termination of 5 min of hypocapnic hypoxia (PETO2 64 +/- 4 Torr, PETCO2 decreased by 2.6 Torr) was also associated with central apnea (longest TE 500% of room air). VE remained below the hyperoxic control for 88 s. We conclude that 1) poststimulus hyperpnea occurs in NREM sleep as long as hypoxia is brief and arterial PCO2 is maintained, suggesting the activation of the afterdischarge mechanism; 2) transient hypocapnia overrides the potentiating effects of afterdischarge, resulting in hypoventilation; and 3) sustained hypoxia abolishes the potentiating effects of after-discharge, resulting in central apnea. These data suggest that the inhibitory effects of sustained hypoxia and hypocapnia may interact to cause periodic breathing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.