Abstract

Two sites from the East Asian steppe, the Mu Us Sandland as a regional case and the Anguli Nuur catchment as a local one, were chosen to detect roles of vegetation, climate, landform, and human disturbance on pollen dispersal. 1) Vegetation: The semi-arid steppe vegetation is characterized by Artemisia and Chenopodiaceae pollen under various vegetation conditions; however, no evident correlation between pollen percentages and corresponding plant species cover is found. 2) Climate: Samples under different Mean Annual Precipitations (MAPs) clearly distinguish themselves in the Mu Us Sandland, implying MAP-determined surface pollen spectra in regional scale. 3) Landform: Surface pollen assemblages in the azonal psammophytic vegetation and lowland meadow, show insignificant variance from the zonal steppe vegetation. The azonal halophilous vegetation, mostly distributed in the lowland or near the lake shore, leads to higher than average percentages of Chenopodiaceae pollen. Signal of exotic Pinus pollen is also strengthened in the lowland and lake sediment. 4) Human disturbance: The role of human disturbance on surface pollen assemblages is weak, as shown in the Mu Us Sandland. This study also provides theoretical bases for quantitative reconstructions of palaeoclimate and palaeovegetation based on fossil pollen spectra from lake sediments and lowland soils in the semi-arid East Asian steppe. We suggest that calibration against locally dispersed pollen taxa is necessary to reliably reconstruct changes in vegetation pattern through time, for example, a factor of 1.75 for the widely used A/C ( Artemisia/Chenopodiaceae) ratio is suggested according to the pollen assemblages in the surface layers of the lake sediment vs. slope soil in Anguli Nuur. However, uncertainties also exist for such calibration considering the dynamics of local-scale azonal vegetation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call