Abstract

Let S={x1,…,xn} be a set of n distinct positive integers and f be an arithmetic function. We use f(S)=f(xi,xj) (resp. f[S]=f[xi,xj]) to denote the n×n matrix having f evaluated at the greatest common divisor (resp. the least common multiple) of xi and xj as its i,j-entry. The set S is called a divisor chain if there is a permutation σ of {1,…,n} such that xσ(1)|…|xσ(n). If S can be partitioned as S=⋃i=1kSi with all Si(1⩽i⩽k) being divisor chains and (max(Si), max(Sj))=gcd(S) for 1⩽i≠j⩽k, then we say that S consists of finitely many quasi-coprime divisor chains. In this paper, we introduce a new method to give the formulas for the determinants of the matrices (f(S)) and (f[S]) on finitely many quasi-coprime divisor chains S. We show also that det(f(S))|det(f[S]) holds under some natural conditions. These extend the results obtained by Tan and Lin (2010) and Tan et al. (2013), respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call