Abstract

Previous manometric studies of esophageal fluid bolus transport in humans have generally ignored the hydrodynamic distinction between intrabolus pressure and pressure within the lumen-occluded, contracting esophageal segment. In this study we obtained concurrent esophageal videofluoroscopic and intraluminal manometric recordings in supine normal volunteers using different bolus volumes and viscosities and abdominal compression. Intrabolus pressure increased with bolus volume, viscosity, and abdominal compression. Esophageal diameter increased with larger bolus volumes, and this increase was correlated with increases in intrabolus pressure. Intrabolus pressure was highest in the bolus tail. Peak intraluminal pressures > 20 mmHg above basal intrabolus pressure almost invariably were associated with effective peristalsis, whereas values of this pressure differential < 20 mmHg frequently were associated with ineffective peristalsis and retrograde bolus escape. Intrabolus pressure can serve as an important indicator of the forces resisting peristaltic transport and the occurrence of ineffective bolus transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.