Abstract

The resistance generated by the gastroduodenal junction was measured in isolated cat and rabbit preparations. Cannulas were tied into the antrum and duodenum. Yield pressures were determined by increasing the pressure in one of the cannulas until flow occurred. The junctional segment of the cat maintained a high yield pressure. Yield pressures were similar in the antroduodenal and the duodenogastric direction (12.5 +/- 5.7 vs. 14.8 5.8 cmH2O) and increased on both sides to the same degree following exposure of the preparation to 100 mM [K+] and to 10(-6) M carbachol. These experimental manipulations also led to the occurrence of pressure waves in the antral cannula. Yield pressures were diminished but not abolished by exposure of the preparation to 0 [Ca2+] solution or 10(-6) M isoproterenol. Junctional segments from the rabbit did not maintain a yield pressure. Resistance across the junctional segment of both species was also measured by channeling the outflow of one of the cannulas to a flowmeter. Over a wide range of pressures, flow rates across the junctional segment of the rabbit exceeded those across the junctional segment of the cat. Carbachol and 100 mM [K+] decreased the base-line flow and increased the amplitude of intermittent decreases of flow. Isoproterenol and 0 [Ca2+] had opposite effects. Inflation of a balloon decreased the flow rate across the rabbit but not the cat junctional segment. Flow rates across the junctional segment did not differ in the antroduodenal and duodenogastric direction. The gastroduodenal junction does not act as an unidirectional valve. Pyloric resistance relates to the structure of the pyloric segment and to phasic and tonic activity of its musculature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call