Abstract
Understanding the factors that underlie the physical exercise-induced increase in body core temperature (TCORE) is essential to developing strategies to counteract hyperthermic fatigue and reduce the risk of exertional heatstroke. This study analyzed the contribution of six factors to TCORE attained at fatigue in Wistar rats (n = 218) subjected to incremental-speed treadmill running: ambient temperature (TAMB), distance traveled, initial TCORE, body mass, measurement site, and heat loss index (HLI). First, we ran hierarchical multiple linear regression analyses with data from different studies conducted in our laboratory (n = 353 recordings). We observed that TAMB, distance traveled, initial TCORE, and measurement site were the variables with predictive power. Next, regression analyses were conducted with data for each of the following TCORE indices: abdominal (TABD), brain cortex (TBRAIN), or colonic (TCOL) temperature. Our findings indicated that TAMB, distance traveled (i.e., an exercise performance-related variable), initial TCORE, and HLI predicted the three TCORE indices at fatigue. Most intriguingly, HLI was inversely related to TABD and TBRAIN but positively associated with TCOL. Lastly, we compared the temperature values at fatigue among these TCORE indices, and the following descendent order was noticed - TCOL, TABD, and TBRAIN - irrespective of TAMB where experiments were conducted. In conclusion, TCORE in rats exercised to fatigue depends primarily on environmental conditions, performance, pre-exercise TCORE, and measurement site. Moreover, the influence of cutaneous heat loss on TCOL is qualitatively different from the influence on TABD and TBRAIN, and the temperature values at fatigue are not homogenous within the body core.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.