Abstract
Beat-to-beat variability of repolarization duration (BVR) is an intrinsic characteristic of cardiac function and a better marker of proarrhythmia than repolarization prolongation alone. The ionic mechanisms underlying baseline BVR in physiological conditions, its rate dependence, and the factors contributing to increased BVR in pathologies remain incompletely understood. Here, we employed computer modeling to provide novel insights into the subcellular mechanisms of BVR under physiological conditions and during simulated drug-induced repolarization prolongation, mimicking long-QT syndromes type 1, 2, and 3. We developed stochastic implementations of 13 major ionic currents and fluxes in a model of canine ventricular-myocyte electrophysiology. Combined stochastic gating of these components resulted in short- and long-term variability, consistent with experimental data from isolated canine ventricular myocytes. The model indicated that the magnitude of stochastic fluctuations is rate dependent due to the rate dependence of action-potential (AP) duration (APD). This process (the “active” component) and the intrinsic nonlinear relationship between membrane current and APD (“intrinsic component”) contribute to the rate dependence of BVR. We identified a major role in physiological BVR for stochastic gating of the persistent Na+ current (INa) and rapidly activating delayed-rectifier K+ current (IKr). Inhibition of IKr or augmentation of INa significantly increased BVR, whereas subsequent β-adrenergic receptor stimulation reduced it, similar to experimental findings in isolated myocytes. In contrast, β-adrenergic stimulation increased BVR in simulated long-QT syndrome type 1. In addition to stochastic channel gating, AP morphology, APD, and beat-to-beat variations in Ca2+ were found to modulate single-cell BVR. Cell-to-cell coupling decreased BVR and this was more pronounced when a model cell with increased BVR was coupled to a model cell with normal BVR. In conclusion, our results provide new insights into the ionic mechanisms underlying BVR and suggest that BVR reflects multiple potentially proarrhythmic parameters, including increased ion-channel stochasticity, prolonged APD, and abnormal Ca2+ handling.
Highlights
Beat-to-beat variability of repolarization duration (BVR) is an intrinsic characteristic of cardiac function that can be observed at multiple scales, from temporal variations in action-potential (AP) duration (APD) of the single cardiac myocyte to instability of the QT interval on the body-surface ECG [1,2,3]
Poincareplots of APDi+1 versus APDi have a circular shape under these conditions in experimental recordings and in simulations with stochastic channel gating, indicating similar magnitudes of short- (STV) and long-term (LTV) variability (STV or LTV = average distance perpendicular to or along the line of identity, respectively; Figure 1B, inset)
Mechanisms contributing to exaggerated BVR in druginduced repolarization prolongation We previously reported that BVR is increased in pharmacological models of long-QT syndrome (LQT) type 2 and LQT3 and that this BVR could be reduced by b-adrenergic stimulation [8]
Summary
Beat-to-beat variability of repolarization duration (BVR) is an intrinsic characteristic of cardiac function that can be observed at multiple scales, from temporal variations in action-potential (AP) duration (APD) of the single cardiac myocyte to instability of the QT interval on the body-surface ECG [1,2,3]. We reported an important rate-dependent role for abnormal Ca2+. Handling and the slowly activating delayed-rectifier K+ current (IKs) in the increased BVR observed during b-adrenergic stimulation in single canine ventricular myocytes [8]. Recent models have provided detailed descriptions of various cardiac cell types in different species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.