Abstract
The anti-vascular action of the tubulin binding agent combretastatin A-4 phosphate (CA-4-P) has been quantified in two types of murine tumour, the breast adenocarcinoma CaNT and the round cell sarcoma SaS. The functional vascular volume, assessed using a fluorescent carbocyanine dye, was significantly reduced at 18 h after CA-4-P treatment in both tumour types, although the degree of reduction was very different in the two tumours. The SaS tumour, which has a higher nitric oxide synthase (NOS) activity than the CaNT tumour, showed ~10-fold greater resistance to vascular damage by CA-4-P. This is consistent with our previous findings, which showed that NO exerts a protective action against this drug. Simultaneous administration of CA-4-P with a NOS inhibitor, Nω-nitro-L-arginine (L-NNA), resulted in enhanced vascular damage and cytotoxicity in both tumour types. Administration of diethylamine NO, an NO donor, conferred protection against the vascular damaging effects. Following treatment with CA-4-P, neutrophil infiltration into the tumours, measured by myeloperoxidase (MPO) activity, was significantly increased. Levels of MPO activity also correlated with the levels of vascular injury and cytotoxicity measured in both tumour types. Neutrophilic MPO generates free radicals and may therefore contribute to the vascular damage associated with CA-4-P treatment. MPO activity was significantly increased in the presence of L-NNA, suggesting that the protective effect of NO against CA-4-P-induced vascular injury may be, at least partially, mediated by limiting neutrophil infiltration. The data are consistent with the hypothesis that neutrophil action contributes to vascular injury by CA-4-P and that NO generation acts to protect the tumour vasculature against CA4-P-induced injury. The protective effect of NO is probably associated with an anti-neutrophil action. © 2000 Cancer Research Campaign
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.