Abstract

Intracellular membrane fusion is coordinated by membrane-anchored fusion proteins. The cytosolic domains of these proteins form a specific complex that pulls the membranes into close proximity. Although some results indicate that membrane merger can be accomplished solely on the basis of proximity, others emphasize the importance of bilayer stress exerted by transmembrane peptides. In a reductionist approach, we recently introduced a fusion machinery built from cholesterol-modified DNA zippers to mimic fusion protein function. Aiming to further optimize DNA-mediated fusion, we varied in this work length and number of DNA strands and used either one or two cholesterol groups for membrane anchoring of DNA. The results reveal that the use of two cholesterol anchors is essential to prevent cDNA strands from shuttling to the same membrane, which leads to vesicle release instead of membrane merger. A surface coverage of 6-13 DNA strands was a precondition for efficient fusion, whereas fusion was insensitive to DNA length within the tested range. Besides lipid mixing, we also demonstrate DNA-induced content mixing of large unilamellar vesicles composed of the most abundant cellular lipids phosphatidylcholine, phosphatidylethanolamine, cholesterol, and sphingomyelin. Taken together, DNA-mediated fusion emerges as a promising tool for the functionalization of artificial and biological membranes and may help to dissect the functional role of fusion proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.