Abstract

We prove a constant term conjecture of Robbins and Zeilberger (J. Combin. Theory Ser. A 66 (1994), 17–27), by translating the problem into a determinant evaluation problem and evaluating the determinant. This determinant generalizes the determinant that gives the number of all totally symmetric self-complementary plane partitions contained in a $(2n)\times(2n)\times(2n)$ box and that was used by Andrews (J. Combin. Theory Ser. A 66 (1994), 28–39) and Andrews and Burge (Pacific J. Math. 158 (1993), 1–14) to compute this number explicitly. The evaluation of the generalized determinant is independent of Andrews and Burge's computations, and therefore in particular constitutes a new solution to this famous enumeration problem. We also evaluate a related determinant, thus generalizing another determinant identity of Andrews and Burge (loc. cit.). By translating some of our determinant identities into constant term identities, we obtain several new constant term identities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.