Abstract

AbstractWe study determinant functors which are defined on a triangulated category and take values in a Picard category. The two main results are the existence of a universal determinant functor for every small triangulated category, and a comparison theorem for determinant functors on a triangulated category with a non-degenerate bounded t-structure and determinant functors on its heart. For a small triangulated category Τ we give a natural definition of groups K0(Τ) and K1(Τ) in terms of the universal determinant functor on Τ, and we show that Ki(Τ) ≅ Ki(ε) for i = 0 and 1 if Τ has a non-degenerate bounded t-structure with heart ε.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.