Abstract
The Kac determinant for the topological N = 2 superconformal algebra is presented as well as a detailed analysis of the singular vectors detected by the roots of the determinants. In addition we identify the standard Verma modules containing ‘no-label’ singular vectors (which are not detected directly by the roots of the determinants). We show that in standard Verma modules there are (at least) four different types of submodules, regarding size and shape. We also review the chiral determinant formula, for chiral Verma modules, adding new insights. Finally we transfer the results obtained to the Verma modules and singular vectors of the Ramond N = 2 algebra, which have been very poorly studied so far. This work clarifies several misconceptions and confusing claims appeared in the literature about the singular vectors, Verma modules and submodules of the topological N = 2 superconformal algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.