Abstract
AbstractIn this paper we study the logical strength of the determinacy of infinite binary games in terms of second order arithmetic. We define new determinacy schemata inspired by the Wadge classes of Polish spaces and show the following equivalences over the system RCA0*, which consists of the axioms of discrete ordered semi‐rings with exponentiation, Δ10 comprehension and Π00 induction, and which is known as a weaker system than the popularbase theory RCA0: 1. Bisep(Δ10, Σ10)‐Det* ↔ WKL0, 2. Bisep(Δ10, Σ20)‐Det* ↔ ATR0 + Σ11 induction, 3. Bisep(Σ10, Σ20)‐Det* ↔ Sep(Σ10, Σ20)‐Det* ↔ Π11‐CA0, 4. Bisep(Δ20, Σ20)‐Det* ↔ Π11‐TR0, where Det* stands for the determinacy of infinite games in the Cantor space (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.