Abstract

Compacted bentonite has been considered a suitable engineered barrier material for high-level radioactive waste (HLW) repositories for several decades. However, hyperalkaline groundwater produced by cementitious materials, combined with the heat generated by nuclear decay during the long-term storage of waste canisters, may cause the deterioration of the swelling properties of compacted bentonite. In this study, a series of swelling pressure tests and scanning electron microscopy (SEM) tests were performed on compacted Gaomiaozi (GMZ) bentonite (dry density 1.7 Mg/m3) to investigate the deterioration of the swelling pressure. Results indicated that the deterioration of the swelling pressure was facilitated by the temperature when the same concentration of NaOH solution was infiltrated, and a model of swelling pressure deterioration was developed to predict the long-term swelling pressure. Furthermore, the dissolution of montmorillonite and some silicate minerals, as well as the formation of non-expanding secondary minerals, led to transformations of the agglomeration patterns of the soil particles and structural damage to the bentonite, which controlled the long-term deterioration of the swelling pressure. Therefore, for the long-term operation of an HLW repository, the deterioration of the swelling pressure of compacted bentonite should be monitored, and safety assessments should account for the effects of heat and alkalinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.